

Page: 1 of 6

Zytel® 70K20HSL BK284

NYLON RESIN

Zytel® 70K20HSL BK284 is a 20% Kevlar® Fiber Reinforced, Heat Stabilized, Polyamide 66

Product information			
Resin Identification	PA66-RF20	ISO 1043	
Part Marking Code	>PA66-RF20<		ISO 11469
ISO designation	ISO 16396-PA66	50	
Rheological properties	dry/cond.		
Moulding shrinkage, parallel	0.9/-	%	ISO 294-4, 2577
Moulding shrinkage, normal	1.4/-	%	ISO 294-4, 2577
Typical mechanical properties	dry/cond.		
Tensile modulus	5300/3500	MPa	ISO 527-1/-2
Tensile stress at break, 5mm/min	110/85	MPa	ISO 527-1/-2
Tensile strain at break, 5mm/min	5/7.2	%	ISO 527-1/-2
Charpy impact strength, 23°C	50/65	kJ/m²	ISO 179/1eU
Charpy notched impact strength, 23°C	6/9	kJ/m ²	ISO 179/1eA
Poisson's ratio	0.35/0.37		
Thermal properties	dry/cond.		
Melting temperature, 10°C/min	263/*	°C	ISO 11357-1/-3
Glass transition temperature, 10°C/min	80/20	°C	ISO 11357-1/-3
Temperature of deflection under load, 1.8 MPa	222/*	°C	ISO 75-1/-2
Temperature of deflection under load, 0.45 MPa	255/*	°C	ISO 75-1/-2
Vicat softening temperature, 50°C/h 50N	240/*	°C	ISO 306
Coefficient of linear thermal expansion (CLTE), parallel	47/*	E-6/K	ISO 11359-1/-2
Coefficient of linear thermal expansion (CLTE),	75/*	E-6/K	ISO 11359-1/-2
normal			
Flammability	dry/cond.		
Glow Wire Flammability Index, 1.0mm	750/-	°C	IEC 60695-2-12
Glow Wire Flammability Index, 2.0mm	750/-	°C	IEC 60695-2-12
Glow Wire Flammability Index, 3.0mm	960/-	°C	IEC 60695-2-12
Glow Wire Ignition Temperature, 1.0mm	750/-	°C	IEC 60695-2-13
Glow Wire Ignition Temperature, 2.0mm	750/-	°C	IEC 60695-2-13
Glow Wire Ignition Temperature, 3.0mm	750/-	°C	IEC 60695-2-13
FMVSS Class	B <80	mm/min	ISO 3795 (FMVSS 302) ISO 3795 (FMVSS 302)
Burning rate, Thickness 1 mm	<00	11111/111111	150 3795 (FINVSS 302)
Electrical properties	dry/cond.		
Dissipation factor, 100Hz	140/-	E-4	IEC 62631-2-1
Dissipation factor, 1MHz	140/-	E-4	IEC 62631-2-1
Volume resistivity	1E9/-	Ohm.m	IEC 62631-3-1
Surface resistivity	*/>1E15	Ohm	IEC 62631-3-2
Electric strength	23/-	kV/mm	IEC 60243-1

Revised: 2025-04-22 Source: Celanese Materials Database

Printed: 2025-05-29

NYLON RESIN

Physical/Other properties

dry/cond.

Humidity absorption, 2mm	2.7/*	%	Sim. to ISO 62
Water absorption, 2mm	6.8/*	%	Sim. to ISO 62
Density	1190/-	kg/m³	ISO 1183

Injection

Drying Recommended	yes	
Drying Temperature	80	°C
Drying Time, Dehumidified Dryer	2 - 4	h
Processing Moisture Content	≤0.2	%
Melt Temperature Optimum	295	°C
Min. melt temperature	285	°C
Max. melt temperature	305	°C
Screw tangential speed	≤0.2	m/s
Mold Temperature Optimum	100	°C
Min. mould temperature	70	°C
Max. mould temperature	120	°C
Hold pressure range	50 - 100	MPa
Hold pressure time	3	s/mm
Back pressure	As low as	MPa
	possible	
Ejection temperature	210	°C

Characteristics

Processing Injection Moulding

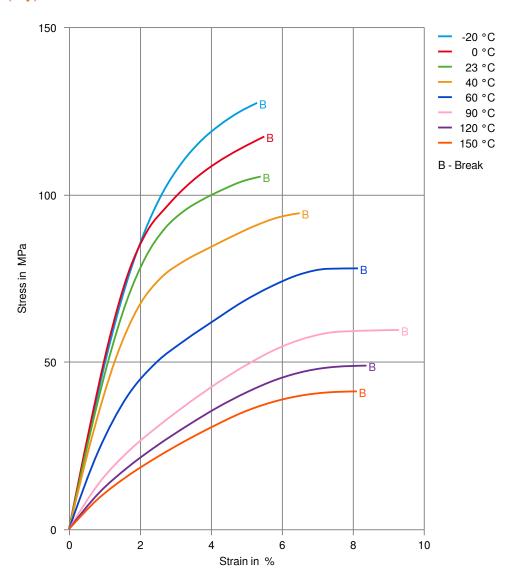
Delivery form Pellets

Additives Release agent, Glass fibre

Special characteristics Heat stabilised or stable to heat, Low wear / Low friction

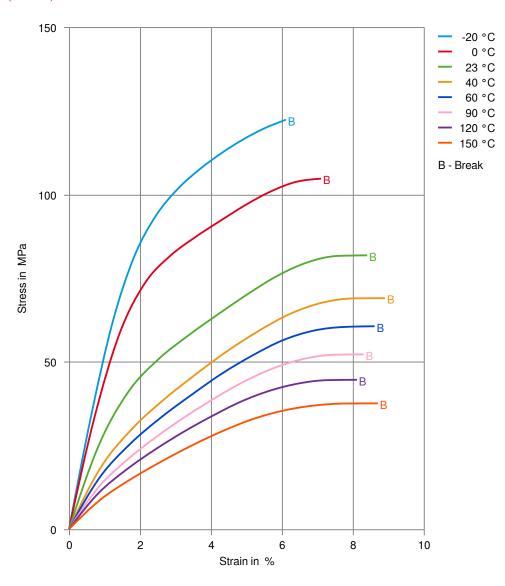
Automotive

OEM STANDARD


Mercedes-Benz DBL5403 PA66 GF20

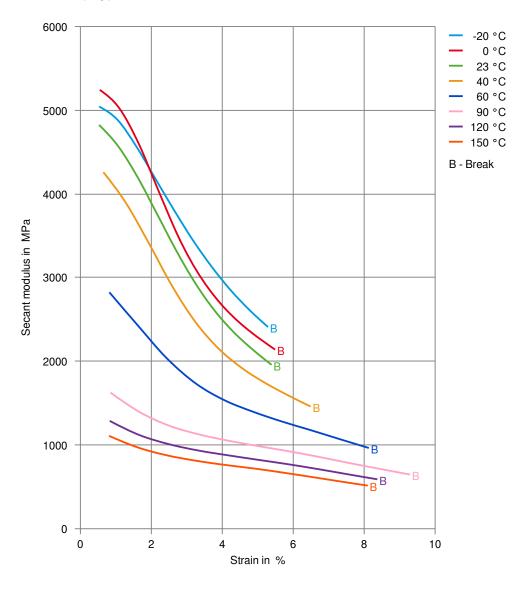
Printed: 2025-05-29 Page: 2 of 6

Stress-strain (dry)



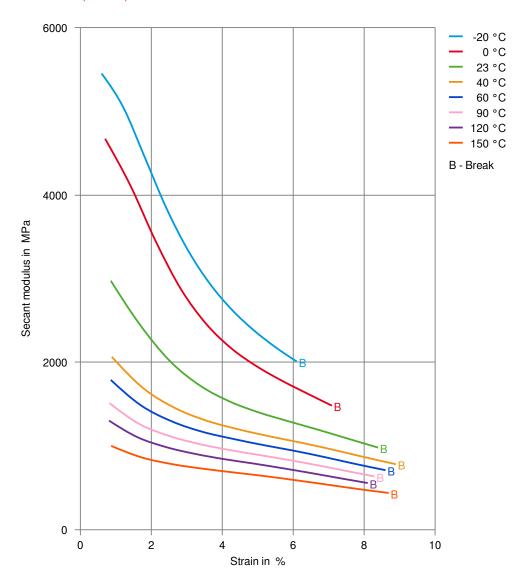
Printed: 2025-05-29 Page: 3 of 6

Stress-strain (cond.)



Printed: 2025-05-29 Page: 4 of 6

Secant modulus-strain (dry)



Printed: 2025-05-29 Page: 5 of 6

Secant modulus-strain (cond.)

Printed: 2025-05-29 Page: 6 of 6

NOTICE TO USERS: Values shown are based on testing of laboratory test specimens and represent data that fall within the standard range of properties for natural material. These values alone do not represent a sufficient basis for any part design and are not intended for use in establishing maximum, minimum, or ranges of values for specification purposes. Colourants or other additives may cause significant variations in data values. Properties of moulded parts can be influenced by a wide variety of factors including, but not limited to, material selection, additives, part design, processing conditions and environmental exposure. Other than those products expressly identified as medical grade (including by MT® product designation or otherwise), Celanese's products are not intended for use in medical or dental implants. Regardless of any such product designation, any determination of the suitability of a particular material and part design for any use contemplated by the users and the manner of such use is the sole responsibility of the users, who must assure themselves that the material as subsequently processed meets the needs of their particular product or use. To the best of our knowledge, the information contained in this publication is accurate; however, we do not assume any liability whatsoever for the accuracy and completeness of such information. The information contained in this publication should not be construed as a promise or guarantee of specific properties of our products. It is the sole responsibility of the users to investigate whether any existing patents are infringed by the use of the materials mentioned in this publication. Moreover, there is a need to reduce human exposure to many materials to the lowest practical limits in view of possible adverse effects. To the extent that any hazards may have been mentioned in this publication, we neither suggest nor guarantee that such hazards are the only ones that exist. We recommend that persons intending to rely on any recommendation or to use any e

© 2025 Celanese or its affiliates. All rights reserved. Celanese®, registered C-ball design and all other trademarks identified herein with ®, TM, SM, unless otherwise noted, are trademarks of Celanese or its affiliates. Fortron is a registered trademark of Fortron Industries LLC.